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Motivation and Background




Anonymity matters

e Whistleblowers

e Governmental
suppression of political
opinion

e Censorship
circumvention

http://facecrooks.com/Internet-Safety-Privacy/To-be-anonymous-or-not-t http://www.dmnews.com/social-media/what-if-people-
o-be-should-you-use-your-real-name-on-the-Internet.html/ want-their-internet-anonymity-back/article/338654/



The internet provides limited anonymity
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A supposed fix - Tor: The Onion Router T@f

e Alice connects to the Tor network
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A supposed fix - Tor: The Onion Router T@f

e Alice obtains a list of Tor nodes from the Tor network




A supposed fix - Tor: The Onion Router T@'

e Alice chooses 3 Tor nodes to make a connection to Bob
e No Tor nodes know the identities of both Bob and Alice
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Traffic analysis attacks

e Adversary correlates Alice and Bob’s traffic

e Only works when adversary intercepts both entry and exit points
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Website fingerprinting (WF) attacks

e Adversary collects database offline and uses it to fingerprint online
e Onlyneeds 1linkin the chain - weaker threat model Receiver
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Simplified WF attack scenario

Each website exhibits characteristic load behavior
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Var-CNN: Automated feature
extraction using variations on CNNs




Why automated feature extraction?

e Usesraw Tor traffic sequences: incoming/outgoing direction, timestep
e Resists network protocol changes
e Could discover more optimal features than humans can find
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Dilated convolutions

e Packetsequenceinherently time-dependent
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A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.
Wavenet: A generative model for raw audio. arXiv, 2016.



Dilated convolutions

e Sacrifice fine-grain detail for broader field of view
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Other techniques

e Cumulative features
o Total number of packets
o Number of incoming and outgoing
o Ratio of incoming to total and outgoing to total
o Total transmission time Softmax Layer
o Average number of packets per second
e Confidence thresholds
o Threshold for attacker certainty l Normal Output
o Adjust types of classification made S1:05

S1:0.5 ' S2:0.4 | UM:0.1
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Ensemble model

e Using timesteps should leak more info to attacker
e No past pre-extracted timing features performed well
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Var-CNN Results




Experimental setup

Wang et al. k-NN data set - blocked pages for monitored, popular pages for unmon
< training data used by competing attacks
Re-randomize train/test sets and average results over 10 trials
Metrics
o True Positive Rate (TPR) - Prop. of monitored sites correctly classified
o False Positive Rate (FPR) - Prop. of unmonitored sites incorrectly classified
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Ensemble model and confidence threshold

e Alone, time model is worse than direction model e TPR and FPR decrease as confidence

e However, their performance is additive threshold increases
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Open-world performance

® 5% better TPR than SDAE ® 3% better TPR than k-FP
e Overasixth the FPR of SDAE e Nearly half the FPR of k-FP
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DynaFlow: A new defense based on
dynamically-adjusting flows




Existing WF defenses

1) Limited defenses - Designed to counter existing attacks
Drawback: No provable guarantees

2 ) Supersequence-based defenses - sends “Supersequence” of web trace
Drawbacks: Requires constantly updated database; does not protect static

content

3) Constant-flow defenses - Sends a continuous stream of network traffic
Drawback: High overheads
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Advantages of DynaFlow

Low Low Bandwidth Strong Security Protects No Database Highly

Latency Usage Guarantees  Dynamic Content Required Tunable
DynaFlow : -. .
BuFLO [13] X % X ¢
Tamaraw [7] X X ' : ; X
Supersequence [40] X X - X X X
Walkie-Talkie [42] v ‘ , X X :
Glove [29] X X X X X
WTE-PAD [21] - X X
Decoy Pages [32] X X v X
LLaMA [10] X X X X




Overview of DynaFlow

Our goal: to construct a defense with similar guarantees as prior
art but with significantly lowered overheads.

Three Components:

1) Burst-pattern morphing

2) Constant traffic flow with dynamically changing intervals
3) Paddingthe number of bursts
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Burst-pattern morphing

e Trafficis morphed into fixed bursts: 1 outgoing packet followed by 4 incoming packets
e Dummy packets added to morph traffic

Before padding:

oL n Jou] | n

After padding (red packets are dummy packets):

ouiag) | n | n JORIIRSNRRNAY
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Inter-packet timing

e Packets are sent every t seconds
e The value of t dynamically changes to fit the loading page
e There are three tunable parameters:a, b, T

o Thevalue of t changes every b bursts

o Upto aadjustments total

o ThevalueoftischosenfromthesetT={t, ..., t}

t t t t

oo P
Time *



The number of bursts

e The number of bursts is padded to {{m], [m?], [m?], ... }
e Advantages of padding to a power of m
o Significantly mitigate privacy loss
o Incurreasonably-small overhead
e Example: when m =2, the bandwidth overhead is under 100%
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DynaFlow Results




Open-world eval. against existing attacks

DynaFlow against existing attacks. All values are in %.

k-NN [40] k-FP [14] Var-CNN o ok

TPR FPR TPR FPR TPR FPR
No defense: 845 2.5 86.3 1.6 89.1 0.7 0 0
Medium security: 154 20.6 5.0 1.6 10.8 3.0 23 59

H|gh secu rity: 59 69.0 4.4 40.1 0.6 0.9 28

112
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Open-world evaluation against prior art
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Attacker F1 score
e 31% F1score:29% TPR, 11% FPR
o DynaFlow: 101% overhead (29% TOH, 73% BWOH)
o Prior art: 138% overhead (40% TOH, 98% BWOH)
e Gapincreases for larger F1 scores



Conclusion

e Var-CNN uses novel variants of CNNs to improve upon prior work:

o Be highly tunable in terms of TPR-FPR trade-off

o  Outperform all prior attacks, all while using < amount of training data
e DynaFlow overcomes challenges of prior WF defenses:

o  Lower overhead than prior work while providing stronger security

o  Protects dynamic content & no database required
e Current status

o  Preprinton arXiv
o All code and data sets publically available
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Appendix of Slides




Var-CNN architecture

e VGG-16 Convolutional Neural Network (CNN) - ImageNet competition
e Multiple blocks composed of multiple layers for deeper feature extraction
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Scaling performance - FPR

e FPRisincredibly important as open-world size increases
e Training on greater numbers of unmonitored sites retains TPR while reducing FPR
e Var-CNN scales better to larger open-worlds than prior-art attacks
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Scaling performance - runtime

e Runtime scales linearly, better than prior models
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The optimal attacker

Overview:
e Knows the exact probability that a website w is visited, generating defended trace
t

e Uses this information to make the best guess for which website w is visited when

he sees atrace t
e We can use this information to calculate what the optimal attacker would guess.

Measuring accuracy:
e F1-score — harmonic mean of precision and recall (TPR)
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Future work

e More powerful deep learning models for Var-CNN

o Computer vision architectures - DenseNet

o Recurrent Neural Network architectures - LSTM with Synthetic Gradients
e Find a better way to determine optimal DynaFlow parameters

o Currently, we sweep parameters one at a time
e Further reduce DynaFlow overheads

o Total overhead sum can still exceed 100% for stronger configurations
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